Dopamine: a potential substrate for synaptic plasticity and memory mechanisms.

نویسنده

  • Thérèse M Jay
چکیده

It is only recently that a number of studies on synaptic plasticity in the hippocampus and other brain areas have considered that a heterosynaptic modulatory input could be recruited as well as the coincident firing of pre- and post-synaptic neurons. So far, the strongest evidence for such a regulation has been attributed to dopaminergic (DA) systems but other modulatory pathways have also been considered to influence synaptic plasticity. This review will focus on dopamine contribution to synaptic plasticity in different brain areas (hippocampus, striatum and prefrontal cortex) with, for each region, a few lines on the distribution of DA projections and receptors. New insights into the possible mechanisms underlying these plastic changes will be considered. The contribution of various DA systems in certain forms of learning and memory will be reviewed with recent advances supporting the hypothesis of similar cellular mechanisms underlying DA regulation of synaptic plasticity and memory processes in which the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway has a potential role. To summarize, endogenous DA, which depends on the activity patterns of DA midbrain neurons in freely moving animals, appears as a key regulator in specific synaptic changes observed at certain stages of learning and memory and of synaptic plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

P18: Signaling Pathway in Long-Term Potentiation

Synaptic plasticity in the central nervous system (CNS) of mammals has been discussed for many years. Several forms of synaptic plasticity of mammal’s CNS have been identified, such as those that occur in long-term potentiation (LTP). Different types of LTP have been observed in distinctive areas of the CNS of mammals. The hippocampus is one of the most important areas in the CNS that pla...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

Dopamine Enables In Vivo Synaptic Plasticity Associated with the Addictive Drug Nicotine

Addictive drugs induce a dopamine signal that contributes to the initiation of addiction, and the dopamine signal influences drug-associated memories that perpetuate drug use. The addiction process shares many commonalities with the synaptic plasticity mechanisms normally attributed to learning and memory. Environmental stimuli repeatedly linked to addictive drugs become learned associations, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Progress in neurobiology

دوره 69 6  شماره 

صفحات  -

تاریخ انتشار 2003